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Abstract

3D model deformation has been an active research topic in geometric processing. Due

to its efficiency, linear blend skinning (LBS) and its follow-up methods are widely

used in practical applications as an efficient method for deforming vector images, ge-

ometric models and animated characters. LBS needs to determine the control handles

and specify their influence weights, which requires expertise and is time-consuming.

Further studies have proposed a method for efficiently calculating bounded biharmonic

weights of given control handles which reduces user effort and produces smooth de-

formation results. The algorithm defines a high-order shape-aware smoothness func-

tion which tends to produce smooth deformation results, but fails to generate locally

rigid deformations. To address this, we propose a novel data-driven approach to pro-

ducing improved weights for handles that makes full use of available 3D model data

by optimizing an energy consisting of data-driven, rigidity and sparsity terms, while

maintaining its advantage of allowing handles of various forms. We further devise

an efficient iterative optimization scheme. Through contrast experiments, it clearly

shows that linear blend skinning based on our optimized weights better reflects the de-

formation characteristics of the model, leading to more accurate deformation results,

outperforming existing methods. The method also retains real-time performance even

with a large number of deformation examples. Our ablation experiments also show that

each energy term is essential.
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1. Introduction

With the rapid development of virtual reality and 3D printing technologies, the

demand for 3D models in industry is ever increasing. Traditional methods for geomet-

ric modeling require users to have the expertise in using specialized software such as

Autodesk Maya. However, this increases the cost of acquiring 3D models and lim-5

its the users who can effectively manipulate 3D models to suit their needs. This is

particularly critical for virtual reality systems where real-time performance is essen-

tial. Meanwhile, 3D models are getting increasingly available as professional artists

continue to create models or obtain models by 3D scanning. It is therefore useful to

generate new models by reusing existing ones. Because of this, 3D model deformation10

plays a vital role in games, animations, films and virtual reality. Rapid deformation

methods which produce realistic results are highly demanded.

Quite recently, Jacobson et al. [1] proposed bounded biharmonic weights, which

when coupled with the linear blend skinning (LBS) algorithm [2], are able to deform

3D models without the need of manual weight specification. The method derives15

weights by optimizing a high-order shape-aware energy without exploiting example

shapes, and so cannot capture full deformation behavior of the object. The weights

sometimes result in objects that appear too soft, especially for those objects that are

locally rigid.

In this paper, we propose a novel weight optimization method that automatically20

produces suitable weights for LBS handles by exploiting example deformations. To

better preserve local shapes, our method utilizes an as-rigid-as-possible (ARAP) energy

term [3] to optimize the weights. We further propose to incorporate a data-driven en-

ergy term that optimizes the weights according to the example deformed shapes in the

dataset. Finally, to improve deformation results for near piecewise rigid deformation,25

a sparse regularization term is introduced to limit the control range of the weights. The

final energy involves the data-driven, sparse regularization and ARAP energy terms.
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We further develop an efficient optimization strategy with the weights initialized using

biharmonic weights [1]. As we will show later by extensive experiments, our method

produces weights that can better deform the target objects than state-of-the-art meth-30

ods, while maintaining the benefits of LBS-based deformation, i.e. allowing handles of

various forms (e.g. points, bones) and real-time performance even with a large number

of example shapes.

2. Related Work

2.1. Geometry-based Mesh Deformation35

Mesh deformation has been an active topic in computer graphics research. Ideally,

visually reasonable deformation is performed on the mesh with the guidance of user in-

put, often in the form of transformation or rotation of the handle points. For a 3D model

in hinge structure like a human body, skeleton-based methods can be used for deforma-

tion. The deformed skeletons are used to drive mesh deformation. However, this does40

not apply to general 3D models. For a general 3D model, a typical method is based on

local differential coordinates, which can be used to maintain the geometrical details of

the model and reconstruct the deformed 3D model under the boundary conditions speci-

fied by the user. Typical work includes deformation based on Laplacian coordinates [4],

the gradient domain method based on Poisson equation [5] and method based on dual45

Laplacian coordinates [6]. In order to maintain the consistency of the model volume

during the deformation, methods [7, 8] introduce optimization terms that keep the vol-

ume constant during the reconstruction process using Laplacian coordinates. This type

of differential coordinate based methods requires the user to specify the spatial coordi-

nates and rotation transformation of the control vertex regions. To simplify user input,50

Sorkine et al. [3] estimate the differential coordinates of the rigid transformation it-

eratively in a framework that optimizes an as-rigid-as-possible (ARAP) energy. With

this method, the user only needs to specify the deformed coordinates of the control

points. The work [9] extends the original ARAP formula by introducing the anisotropy

directly into the deformation energy. However, given the same input which has a large55

deformation space, it is difficult for non-data-driven mesh deformation methods with
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no prior knowledge to reasonably distribute the distortion during model deformation,

and the deformation results may not follow the behavior of the target objects.

Another approach to driving mesh deformation is through assigning control weights

for mesh regions w.r.t. each handle, and using methods such as linear blend skinning60

(LBS) [2] to propagate handle movement to mesh vertices. This method is very effi-

cient, and therefore suitable for real-time deformation. It supports a variety of different

handle forms, such as control points, bones, etc. However, it requires not only spec-

ifying handles, but also their weights on vertices, which is tedious. To address this,

Jacobson et al. [1] propose an automatic approach to determining weights by opti-65

mizing a high-order shape-aware energy, namely bounded biharmonic. The method

is essentially heuristic and may produce unnatural deformation results especially for

piecewise rigid objects as they appear too soft. Later work [10] allows the user to

specify some constraints with the remaining constraints automatically derived by mini-

mizing an ARAP energy. To cope with shapes that have complex deformation behavior,70

either a large number of constraints are required, or the method may not produce the

desired results. Recent work [11] also combines the ARAP energy with the LBS al-

gorithm to find suitable skinning weights. However, their method is only suited for

skeleton handles. Moreover, LBS suffers from joint collapse. Recently, Bai et al. [12]

proposed a volumetric skinning method using a set of meta-balls to solve this problem,75

while our method uses data-driven optimization to avoid this kind of artifacts.

2.2. Data-driven Mesh Deformation

For the deformation of 3D models, the aim is to obtain realistic deformation re-

sults. As the deformation behavior of objects can be complicated, learning this from

the model dataset can help obtain desired results more effectively. Sumner et al. [13]80

first proposed a method based on global principal component analysis (PCA), which

can analyze the model dataset and extract the main components of the model deforma-

tion. However, the user manipulation is often local when editing the model, but the use

of the global principal components causes other unedited places to also be deformed,

which violates the user’s editing intention. To solve this problem, Neumann et al. [14]85

proposed a method that uses local PCA to exact principal components of local defor-
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mations for models in the dataset, but the work is based on the Euclidean coordinates

so cannot handle large rotations. Huang et al. [15] replaced the coordinate representa-

tion with the deformation gradient representation which better handles large rotations.

Frohlich et al. [16] use rotation-invariant quantities for data-driven mesh editing, but90

they use rotation invariants such as edge lengths and dihedral angles of the mesh, so

their work cannot handle extrapolation and requires solving a large-scale linear system

of equations with varying coefficients. Gao et al. [17] proposed a data-driven model

editing method based on rotational invariants, but this method still uses the global prin-

cipal components, so it is difficult to perform local editing. Moreover, the method uses95

numerical methods to calculate derivatives required for optimizing the deformation en-

ergy, which is inefficient, especially when there is a large number of example shapes.

Tan et al. [18] proposed a graph convolutional neural network to extract localized defor-

mation components. By utilizing the as-consistent-as-possible representation [19], the

method handles large rotations robustly. However, such methods still cannot cope with100

different types of handles. In skin deformation, Murai et al. [20] combine simulation-

based and data-driven approaches, where simulation helps obtain realistic results for

a wide variety of motions, and the new data can be used to adapt the model to dif-

ferent body types. Our method also exploits example shapes, and use them to help

derive optimized weights for LBS. Le et al. [21] proposed a data-driven method to au-105

tomatically generate LBS weights based on the skeleton. Their method is restricted to

skeleton handles, whereas our method copes with general handles, including control

points, skeleton bones and their combination.

2.3. Mesh Deformation using Sparsity

Sparsity has been widely used in various mesh deformation methods. Xu et al. [22]110

present a review about a few representative examples of how the interaction between

sparsity-based methods and geometric processing can enrich both fields. Gao et al. [23]

introduce general lp norms to shape deformation, and show that different p values in-

fluence the distribution of unavoidable distortions. Deng et al. [24] introduce an l1,2

sparse regularization penalty into their framework to explore local deformation. Le et115

al. [25] introduce Smooth Skinning Decomposition with Rigid Bones (SSDR) in order
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to solve the inverse problem of the LBS framework. With the sparseness constraint on

the weight map, SSDR can be used for traditional skinning decomposition tasks.

3. Energy Formulation

3.1. Preliminary120

Our goal is to define smooth deformations for 2D or 3D shapes by blending affine

transformations at arbitrary handles. Let Ω ⊂ R2 or R3 be the volumetric domain

enclosed by the union of the given shape S and cage controls (if any). We denote the

handles by Hj ⊂ Ω, j = 1, ..., nh, where nh is the total number of handles. A handle

can be a single point, a region, a skeleton bone or a vertex of a cage. The user defines

an affine transformation Tj for each handle Hj , and all points p ∈ Ω are deformed by

their weighted combinations:

p
′

i =

nh∑
j=1

wijTj

pi

1

 , (1)

where pi and p
′

i are the vertex coordinates before and after deformation, Tj is the

affine matrix of handle Hj , and wij is the weight of handle Hj on vertex i.

To calculate the weights in the LBS algorithm, Jacobson et al. [1] proposed bounded

biharmonic weights. They define the weight vector wj of the jth handle (consisting of

its weights on all vertices) as the minimizer of a higher-order shape-aware smoothness125

functional, namely, the Laplacian energy, with some constraints.

arg min
wj ,j=1,...,nh

1

2

∫
Ω

‖∆wj‖2dV (2)

subject to:

wj |Hk
= δjk (3)

nh∑
j=1

wj(p) = 1,∀p ∈ Ω (4)

0 ≤ wj(p) ≤ 1, j = 1, ..., nh,∀p ∈ Ω (5)
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δjk is the Kronecker function. The bounded biharmonic weights have some competitive

properties, including smoothness, non-negativity, shape-awareness, partition of unity,

locality and sparsity, and no local maximum. Please refer to [1] for details.

The Laplacian energy Eq. 2 is discretized using the standard linear FEM Laplacian

M−1L where M is the lumped mass matrix (with Voronoi area/volume Mi of vertex

vi on each diagonal entry i) and L is the symmetric stiffness matrix. After discretizing

the continuous integral term, we have

nh∑
j=1

1

2

∫
Ω

||∆wj ||2dV ≈
nh∑
j=1

1

2
(M−1Lwj)

TM(M−1Lwj)

=
1

2

nh∑
j=1

wj
T (LM−1L)wj

(6)

Through discretization, it is possible to convert an integral form which is difficult to130

solve into a quadratic form which is easy to compute. The above constraints Eqs. 3-5

are all linear equations or inequalities w.r.t. wj . Once we have the matrices M and

L from the mesh representation of the 3D model, we can transform the problem into

solving quadratic minima under linear constraints.

In this paper, we develop a novel data-driven approach to weight optimization.135

We therefore assume a set of deformed shapes with the same topology is given, and

optimize weights for LBS according to the given handles.

3.2. ARAP Energy

To better evaluate the local shape preservation of the deformation, following [10],

we minimize an as-rigid-as-possible (ARAP) energy [3] Earap with the deformed ver-

tex coordinates obtained from Eq. 1. To better capture piecewise rigid deformation,

reduce computation and avoid overfitting, we also partition the mesh into a set of re-

gions {Gg}, g = 1, 2, . . . , |G| and |G| is the number of regions (viewed as edge groups).

For each region Gg , we assign a local rotation matrix Rg . Then, the ARAP energy can

be written as:

Earap =
∑
g

∑
(i,j)∈Gg

w̃ij‖(p′i − p′j)−Rg(pi − pj)‖
2 (7)
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where, w̃ij is the cotangent weight [26] defined as

w̃ij =
1

2
(cotαij + cotβij) (8)

where αij and βij are angles opposite to the edge (i, j) in adjacent triangles and Rg

is the rotation matrix of the edge group Gg . We similarly use k-means clustering on140

the weight matrix W to obtain divided edge groups as W shows how much different

handles contribute to the deformation of every mesh vertex [10].

3.3. Data-driven Energy

Let Q be a deformed mesh. Ideally, the weights should allow accurate reconstruc-

tion of the given deformed mesh. We introduce a data-driven energy term that measures

the difference of the mesh obtained by the deformation and the known deformed mesh

Q in the dataset. We assume some example deformations are given, so the data-driven

energy will consider deviations of all the deformed meshes. For simplicity, we now de-

fine the energy for a deformed mesh Q. Let qi be the vertex coordinates of the known

deformed mesh Q, and denote by p′i the vertex coordinates of the deformed mesh ob-

tained by LBS deformation. np is the number of vertices on the mesh. The data-driven

energy w.r.t. Q is

Ediff =

np∑
i=1

‖p′i − qi‖2 (9)

3.4. Sparsity Energy

With the ARAP and data-driven energy terms above, the learned weights allow

the example shapes to be reconstructed. However, the effective control range of each

handle may still be beyond what it should be. This is particularly problematic for

piecewise rigid deformation as a handle may have effect on vertices that should be

controlled by an adjacent handle. To address this, we introduce a sparsity term that

promotes the change of weights to be located sparsely. More specifically, we define the

sparsity term with the Laplace matrix L

Esparse =

nh∑
j=1

|Lwj |. (10)
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The Laplace matrix captures the relationships between adjacent vertices, and the l1145

norm promotes sparse distribution. This helps make the effective range of each handle

in control and avoid propagating handle deformation to regions which should not be

affected.

3.5. Overall Energy

Given a reference model (the initial model before deformation), and a collection of

m deformed shapes, our overall energy combines the three energy terms Eq. 7, Eq. 9

and Eq. 10 over all the m shapes. For the kth deformed shape, the overall energy is

defined as

Ek =E
(k)
diff + λ1E

(k)
sparse + λ2E

(k)
arap

=

np∑
i=1

‖p
′(k)
i − q

(k)
i ‖

2 + λ1

nh∑
j=1

|Lwj |

+λ2

∑
g

∑
(i,j)∈Gg

w̃ij‖(p
′(k)
i − p

′(k)
j )−R(k)

g (pi − pj)‖
2

(11)

where λ1 and λ2 are the relative weights that balance the three energy terms, and (k)

indicates the kth deformed shape. We sum Eq. 11 for each model in the dataset to get

our final target energy term Etotal:

Etotal =

m∑
k=1

Ek. (12)

4. Algorithmic Solution150

We now present the algorithmic solution of our approach, including working out

weights and producing deformed meshes following handle movement.

4.1. Weight Optimization

Given a model dataset with more than one model with the same topology, select

a model in the dataset as the reference model (the initial model before deformation),155

and select the handles (e.g. control point) on the reference model. Our aim is to find

LBS weights that optimize Etotal in Eq. 12. As Etotal is related to different unknown
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variables, directly optimizing it is difficult. We therefore take an iterative approach

that optimizes one set of variables at a time. To start this process, we use bounded

biharmonic weights in Eq. 2 to initialize the weights for given handles. We obtain the160

weight vector wj as a column to form a weight matrix W, which is convenient for

further calculations. W is an np × nh matrix, and wij is the weight value of the jth

handle on the ith vertex.

Observing the energy Eq. 11, we notice that p
′(k)
i and p

′(k)
j can be represented by

Eq. 1. The whole energy can be regarded as a function w.r.t. the weights, the affine ma-165

trices {T(k)
j } and the rotation matrices {R(k)

g }. In the interactive deformation process,

the affine matrices {T(k)
j } are obtained through user interaction, but during weight op-

timization, the affine matrices are not known in advance and need to be optimized. We

alternately optimize the following: Given the weights W initialized with the bounded

biharmonic weights, which means that for a given set of rigid transformations {R(k)
g },170

we look for a set of affine transformation matrices {T(k)
j } that minimizesEtotal. Then,

based on the weights and the obtained {T(k)
j }, we minimize Etotal to obtain the rigid

transformations {R(k)
g }. Finally, based on the newly obtained {T(k)

j } and {R(k)
g },

we optimize the weights by minimizing Etotal. By repeating this iterative process,

the weights can be continually optimized until Etotal falls below a given threshold or175

reaches a minimum. We now give each step in detail.

Computing {T(k)
j }. Since we have iterative steps, we can initialize all {R(k)

g } to

unit matrices. For different models in the dataset, the affine transformation matrices

{T(k)
j } and the rotation matrices {R(k)

g } are different and should be optimized sep-

arately. For simplicity of description, we consider the deformation energy Ek for a

single model and omit the notation k. Let us first consider the partial derivative of Ek

w.r.t. p′i, and the remaining terms are derived from the ARAP energy term and the

data-driven term:
∂Ek

∂p′i
=
∂Ediff

∂p′i
+ λ2

∂Earap

∂p′i
(13)

Consider
∂Earap

∂p′i
= 0 (14)
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∂Ediff

∂p′i
= 0 (15)

From Eq. 14, we can get a linear equation∑
(i,j)∈Gg

w̃ij(p
′
i − p′j) =

∑
(i,j)∈Gg

w̃ijRg(pi − pj) (16)

It can then be simplified as:

Lp′ = b (17)

where L is the Laplace matrix with edge weights, and p′ =
[
p′i, . . . ,p

′
np

]T
contains

the deformed coordinates to be calculated. To minimize Ek, let ∂Ek

∂p′
i

= 0, combining

the linear equations obtained by Eq. 15 with Eq. 17, we can getλ2L

I

p′ =

λ2b

q

 (18)

Taking Eq. 1 into account, we then obtain:

λ2L

I




∑
j w1j(p

T
1 , 1)TT

j∑
j w2j(p

T
2 , 1)TT

j

...∑
j wnpj(p

T
n , 1)TT

j

 =

λ2b

q

 (19)

We can get the least squares solution of {Tj}. We further rewrite Eq. 19 as:

SKT = b′ (20)

where S =

λ2L

I

, K is a sparse matrix of size np × 4nh, T is the transposed matrix

of {Tj} of size 4nh× 3. Then we reshape the matrix T and transform it into a column

vector. From Eq. 20, we can directly obtain the least squares solution of {Tj}.

Computing {R(k)
g }. Obtaining the affine matrices {T(k)

j } completes the first step180

of the weight optimization process. The second step is to calculate the rotation matrices

{R(k)
g } by minimizing Etotal based on the known weights and the obtained affine

transformation matrices {T(k)
j }. Again, we consider Ek to simplify the problem. It

can be found that in the Ek expression in Eq. 11, only the ARAP energy term Earap is
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related to {Rg}, and the other terms are constant when given known weights and affine185

transformation matrices {Tj}.

We briefly describe the derivation for the optimal rotation Rg for a fixed shape

pair S, S ′ (before and after deformation). For convenience, let us denote the edge

eij := pi − pj , and similarly e′ij for the deformed edge S ′. From [10], we have

Rg = arg maxTr(Rg

∑
(i,j)∈Gg

w̃ijeije
′T
ij ) (21)

Denote by Sg the covariance matrix

Sg =
∑

(i,j)∈Gg

w̃ijeije
′
ij

T
= PgDg(P′g)T . (22)

The matrix Dg is a diagonal matrix containing the edge weights w̃ij , Pi is a 3 × |Gg|

matrix containing eij’s as its columns, and similarly for P′i. The rotation matrix Rg

maximizing Tr(RgSg) is obtained when RgSg is symmetric positive semi-definite.

Rg is derived from the singular value decomposition of Sg = UgΣgV
T
g :

Rg = VgU
T
g (23)

If det(Rg) ≤ 0, it is necessary to change the sign of the column in the matrix Sg190

corresponding to minimum singular value of the matrix, so that det(Rg) > 0.

Optimizing Weights. The final step in optimization is the most important step,

which will directly derive the optimized weights we need. Since the weights are the

same in each Ek, we consider the total energy Etotal. The ARAP energy term Earap

and the data-driven term Ediff can be converted to the following according to the195
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derivation of Eqs. 17 and 18:

m∑
k=1

(

np∑
i=1

‖p
′k
i − qk

i ‖2 + λ2‖Lp
′k − bk‖2)

=

m∑
k=1

∣∣∣∣∣∣
∣∣∣∣∣∣
λ2L

I

p
′k −

λ2b
k

qk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

m∑
k=1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

λ2L

I




∑
j w1j(p

T
1 , 1)TkT

j∑
j w2j(p

T
2 , 1)TkT

j

...∑
j wnpj(p

T
np
, 1)TkT

j

−
λ2b

k

qk


∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

2 (24)

Substituting the above equation into Etotal’s expression, Eq. 12 gives the following:

Etotal =

m∑
k=1

(λ1

nh∑
j=1

|Lwj |+

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

λ2L

I




∑
j w1j(p

T
1 , 1)TkT

j∑
j w2j(p

T
2 , 1)TkT

j

...∑
j wnpj(p

T
np
, 1)TkT

j

−
λ2b

k

qk


∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

2

)

(25)

Etotal above involves both l1 and l2 norms, but it is still a convex optimization problem.

We can efficiently solve it using CVX [27, 28] as the sparse solver to calculate the

weights for all handles simultaneously.

In practice, we apply the above three steps iteratively: After determining any two200

of the weight matrix W, the affine transformation matrices {T(k)
j }, and the rotation

matrices {R(k)
g }, the remaining one is solved, until the total energy termEtotal reaches

a minimum or below a given threshold. The entire workflow is shown in Fig. 1.

4.2. Weight Guided Model Deformation

After having the optimized weights, the deformed shape can be obtained using

Eq. 1. However, this requires specifying affine transformations for handles. This can

be achieved with appropriate user interface. Alternatively, we develop an approach

13
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Figure 1: The entire optimization framework for weights.

which derives affine transformations using handle coordinates. To achieve this, we

follow the method of weight optimization to obtain the affine matrices by optimizing

the deformation energy. Ignoring the sparse regularization term which is irrelevant to

the affine transformation matrices and the data-driven term only used for optimization,

this only leaves the ARAP term to obtain the affine transformation matrices:

Etransfer = Earap =
∑
g

∑
(i,j)∈Gg

w̃ij‖(p
′

i − p
′

j)−Rg(pi − pj)‖
2

(26)

The steps for optimizing the above equation are similar to the procedure of optimizing205

the weights. The only difference is that the weights are already determined, so only the

affine matrices {Tj} and the rotation matrices {Rg} need to be optimized.

On the basis of Eq. 26, we also need to add some model constraints to the entire

optimization process, such as the coordinates of the handles given by user interactions:

p
′

i = cl, l ∈ D (27)

where D denotes the set of the control points in the vertex set. They are determined

by the stationary points and control points selected by users. Adding these constraints

to Eq. 26 only needs to assign 0 to the corresponding row and column of the Laplace210

matrix L, and update the vector on the right hand side of the equation with cl. The

same changes are required when calculating the rotation matrices {Rg}. We can ob-
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tain the affine matrices after several iterations of optimization. Combined with the

optimized weights, the model can then be deformed by the linear blend skinning algo-

rithm. Different from the weight optimization, when the optimized affine matrices are215

obtained from Eq. 26, except that the SVD decomposition of the rotation matrix {Rg}

is nonlinear, the rest of the operations are linear, so the deformation can be achieved

in real-time. It should be emphasized that the method for obtaining the handle coor-

dinates and then solving the affine matrices is only a convenient way, and specifying

affine transformations directly is still more general.220

5. Experimental Results and Discussions

In this section, we compare our optimized weights with the original bounded bi-

harmonic weights and several state-of-the-art deformation methods [16], [17], [10], [3]

and [13]. Finally, we prove the necessity of each term in our energy function.

5.1. Comparison Experiments225

We use various datasets to compare the LBS algorithm using our optimized weights

with that using the original bounded biharmonic weights, and with [10]. These datasets

are Card, Horse [29], Face, Pants [30], Hand, and SCAPE [31]. During comparison,

we use the algorithm described in Sec. 4.2.

Fig. 2(a) shows a card model with 2,500 vertices and 4,802 triangular faces. We230

choose the two midpoints of opposite sides of the card as two control points. The

bounded biharmonic weights of these two control points are calculated using Eq. 2,

which are shown in Fig. 3(a). We only visualize the weights w.r.t. one control point, as

the weights w.r.t. the other control point are symmetric.

The weight is large in the red area, and small in blue area (see Fig. 3(c) for the color235

bar). It can be seen that the bounded biharmonic weights are centered on the control

point and gradually decrease towards the surrounding, showing good continuity and

smoothness. As expected, this weight distribution leads to a very soft deformation

result with the bounded biharmonic weights (see Fig. 4(a)). This is not natural, and in

particular different from the given deformation example in Fig. 2(b) which shows the240
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Figure 2: Card models. (a) is the source Card model with two control points located in the middle of a pair

of opposite sides. (b) is the example shape used in our optimization.

Figure 3: Visualization of the weights on the Card model. (a) is the bounded biharmonic weights and (b) is

our optimized weights. (c) shows the color bar. We only show the weights of one control point due to the

symmetry distribution of the weights.

Figure 4: Card deformation comparison.
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card should be piecewise rigid. We use this model and the original model to optimize

the weights, as shown in Fig. 3(b). Compared with Fig. 3(a), our optimized weights

are near 1 for half of the card close to the control point and near 0 for the remaining

half of the card away from the control point. The weights near the folding line of

the card drop from 1 to 0 rapidly. We can conclude that the card is (almost) divided245

into two parts, where each part is controlled by the respective control point. Fig. 4(b)

shows the deformation result using our optimized weights. It is obvious that our result

is consistent with expectation. By further adjusting the position of the control points,

our method can easily produce the deformed card with different folding angles.

As mentioned in the previous section, clustering contributes to the optimization of250

weights, and the weights also determine the results of clustering. Fig. 5 shows the

result of clustering, which clearly corresponds to the symmetric weight distribution of

the two control points.

Figure 5: Clustering result on the Card model.

We also compare our weights with the bounded biharmonic weights [1] on Pants

and Hand. In the Pants experiment, we use a pair of “kicking” pants as an example,255

while in the Hand experiment, we use six examples to optimize the weights. The

deformation results are shown in Figs. 6 and 7. It can be seen from Fig. 6 that our

weights can well handle rigid deformation and from Fig. 7 that our weights produce

more plausible results due to the data-driven term in our total energy.

We then compare our method with [10]. We take Face, Horse [29] and SCAPE [31]260

as test cases. We use multiple examples (larger than 10) in these cases. Fig. 8(a) shows

a face model with four control points, two of which are at the upper eyelids. The

bounded biharmonic weights of the control point on the left eyelid are visualized in
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Figure 6: Deformation result comparison with [1] on the Pants model.

Figure 7: Deformation result comparison with [1] on the Hand model. It is obvious that our result is more

smooth.
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Figure 8: Face models. (a) is the source face model with four control points, and (b) is an example shape

used in our optimization.

Figure 9: Weight visualization of the Face model. (a) is the bounded biharmonic weight result and (b) is our

optimized weight result. (c) shows the color bar.

Fig. 9(a). It can be seen that the bounded biharmonic weights still exhibit continuous,

smooth characteristics, but the control area distribution of all control points is rela-265

tively uniform, especially the control area of the control points on the eyelids greatly

exceeds the range of the eyelids which means that if someone drags the control points

on the eyelids, it will cause a large part of the surrounding face to deform, resulting in

unnatural deformation. For our method several face models from the dataset are used

to optimize the weights, and one of which has closed eyes, as shown in Fig. 8(b). The270

optimized weights are shown in Fig. 9(b). The area where the weight is non-zero is

limited to the eyelid part.

We experiment with an open source interactive deformation platform introduced

in [10] and compare with the method in [10]. Deformation result comparisons are

shown in Fig. 10. Our result shows a very natural closed eye, where the result of [10]275

pulls part of the face around the eye.

In order to understand the optimization process more clearly, we visualize the
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Figure 10: Face deformation comparison. Our result shows a very natural closed eye, which is better than

the result of [10] which obviously pulls part of the face around the eye.

Figure 11: Weights change during the optimization on the Face model.

weights every five iterations in the optimization process, as shown in Fig. 11. From this

series of figures, we can see that the weights gradually converge from the concentric

distribution of the original bounded biharmonic weights until the red area representing280

the larger weights gradually shrinks to the area of the upper eyelid, while the weights

in other areas are almost changed to 0.

To demonstrate the effect with more control points, we select nine control points on

the face model, and the deformation result is shown in Fig. 12. Since the entire facial

expression space cannot be modeled by skinning weights only, some expressions are285

hard to obtain even by using a large number of control points.

In addition, we use the Horse model [29] and test the combination of two types of

handles: control points and skeleton bones. We use control points to control horsetail

and skeleton to control the body of the horse. The results are shown in Fig. 13. In the
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Figure 12: Face model with more control points. (a) is the original face model with nine control points, (b)

is the deformed shape.

Figure 13: Weight visualization and deformation results on the Horse model [29]. The horsetail in the result

of [10] has obvious distortion and unnatural bending, while in our result it is more natural and smooth, which

gives a feeling that the horse is swinging the tail. The red rectangles show that in the result of [10], the joint

between the tail and the body has some artifacts and the abdomen has abnormal contraction.
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Figure 14: Deformation result comparison with [10] on the SCAPE model [31]. It can be seen that our

method can well handle the deformation around the skeleton joint due to the data-driven term.

first pair of comparison, the horsetail in the result of [10] has obvious distortion and290

unnatural bending, while in our result it is more natural and smooth, giving us a feeling

that the horse is swinging its tail. In the second pair of comparison, we use the skeleton

to deform the horse body. It can be seen from the weight visualization that the bounded

biharmonic weights of the leg have some redundant parts on abdomen and back of the

body, which influence the abdomen to contract. Also, the joint between the tail and the295

body has some artifacts.

Our method is flexible with handle forms, and we can also optimize weights on

skeleton handles. We use the SCAPE [31] model to compare deformation results.

Fig. 14 shows the comparison results using skeleton handles. It can be seen that our

weights can well handle the deformation around skeleton joints.300

We further compare our method with another data-driven deformation method [13].

We use Hand and Pants models to illustrate the superiority of our method. In the

comparison, the models used for our weight optimization and the models as the basis

for [13] are the same. The results of comparison are shown in Figs. 15 and 16, which

demonstrate that the method [13] generates results with undesired distortions whereas305

our results look natural.
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Figure 15: Deformation result comparison on the Hand model with [13] where the result of [13] has elon-

gated fingers, while our method produces a normal result.

Figure 16: Deformation result comparison on the Pants model with [13]. Our result shows a good “kicking”

motion while [13] shows a distorted result.

We also compare with data-driven methods [16] and [17] on the SCAPE [31] model

based on control points (as these methods can only take control points as handles).

When compared to [16], we randomly select five examples, whereas for [17], 40 ex-

amples are randomly selected. We use the same models to optimize weights when310

compared with [16] and [17] respectively. The deformation comparisons are shown in

Figs. 17 and 18. Our method avoids the artifacts of alternative methods.

Figure 17: Deformation result comparison on the SCAPE [31] model with [16]. There are some artifacts on

the human hand in the result of [16].
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Figure 18: Deformation result comparison on the SCAPE [31] model with [17]. We only move the control

points on the right leg, and there are some extra motions like the flipped hand in [17] while our result only

has the deformation of the right leg as expected.

Figure 19: Deformation result comparison on the Pants model with ARAP [3]. The result of [3] has blended

pants legs, while our result has the correct squat posture.

Finally, we compare our method with ARAP deformation [3]. Our method has the

data-driven term, which gives the deformation more information to produce desired

results. The results are shown in Fig. 19.315

Our method is very efficient, achieving real-time performance. We compare the

online deformation time with data-driven methods [17], [30] and [13] on the SCAPE

model [31]. The results are shown in Fig. 20. Our method only involves matrix mul-

tiplications and SVD decomposition which cost little time and due to the offline op-

timization, the time of our deformation method does not increase as the number of320

examples increases, while the time of other data-driven methods are affected by the

number of examples (components) used, and may not maintain real-time performance

when a large number of examples (components) are involved.
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Figure 20: Deformation time comparison on SCAPE [31] model with [17], [30] and [13].

Figure 21: Validation of each energy term. It is obvious that each energy term is needed.

5.2. Ablation study

In order to verify that the energy terms we mentioned in Sec. 3 can play their role,325

we conduct an ablation study. We take the face model as an example, and the selection

of control points is the same as Fig. 8.

To verify the role of the l1 norm used in the sparsity term, we design two experi-

ments, namely removing the l1 norm sparsity term and replacing the l1 norm with the

l2 norm. Fig. 21(a) shows the result of replacing it with the l2 norm. The effect of330

the l2 norm tends to be averaged, and it is not sparse, which is contrary to our needs.

The weight distribution in Fig. 21(b) is the result of optimization after removing the l1

norm sparsity regularization. When Etotal no longer has a significant decrease trend,

the weight distribution of the control point still covers a larger area than it should be.

From these, we can clearly confirm that the l1 norm sparsity term has played an impor-335

tant role in the optimization process.

The data-driven term provides essential guidance for the optimization to capture
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Figure 22: Comparison between sparsification performed simultaneously with optimization (b) and spar-

sification performed separately from optimization (a). Simultaneous optimization in our method is more

effective.

Weights Separate Simultaneous

< 0.1 834 2408

< 0.05 432 1958

Table 1: Comparison of sparsity between two optimization strategies, namely sparsification performed sep-

arately from optimization and sparsification performed simultaneously with optimization, measured by the

number of vertices with small (near-zero) weights. It can be seen that simultaneous optimization has better

sparsification effects.

the object deformation behavior. Fig. 21(c) shows the result of removing the data-

driven term. Lacking the guidance of the data-driven term, the optimization simply

makes Etotal smaller, without following the deformation behavior. Fig. 21(d) shows340

the weight distribution of the experiment that removes the ARAP term for optimization,

which again fails to produce desired weight distribution, as shown in Fig. 21(e).

Through these sets of experiments, we confirm that the three energy terms that

make up the total energy Etotal are all necessary and indispensable, and their role is

consistent with the previous description.345

Moreover, our sparsification and optimization are performed simultaneously. We

compare this with an alternative strategy similar to [11] where sparsification is per-

formed separately from the optimization. Fig. 22 shows the visual comparison and

statical comparison is presented in Table 1. Our simultaneous sparsification and opti-

mization strategy leads to significantly better sparsification effects.350
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5.3. Limitations

Our method has some limitations. When control points are used for deformation,

since their control range is limited, they are not particularly suited to large-scale defor-

mations. Instead, control points are more suitable for fine-tuning on small scales, such

as facial expressions, muscle stretching, etc. For large-scale motions, one still needs355

skeletons to achieve better results. Another limitation is for complex models with a

large number of vertices, the speed of offline optimization of weights can be slow, and

the memory usage is high. We plan to further improve the efficiency in the offline

processing. Nevertheless, in the online stage, our method remains efficient.

6. Conclusion360

In this paper, we introduce a data-driven approach to optimizing weights for linear

blend skinning deformation. By introducing our new data-driven and sparsity regular-

ization terms, the deformation weights effectively follow the deformation behavior of

given examples, leading to more natural deformation results and avoiding unintuitive

global effects. Our online computation is very efficient, and keeps running times con-365

stant with arbitrary number of examples. Our method can also be used with different

forms of handles.
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